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Abstract 

Some simplifying assumptions and noticing properties of streamlined balloons 
lead us to a system of three equations with second degree derivatives, which is 
valid only for small motions. Predicting large motions needs the use of computing 
machines and a complete system of equations. Nevertheless the simplified model 
is adequate to derive stability criteria of the balloon. These criteria provide 
important relations between mechanical and aerodynamic parameters. 

35.1 INTRODUCTION 

This study has been done in order to give some evidence of the importance of 

some balloon parameters; especially, critical wind speed, mooring altitude, lateral 

lift coefficient, and rotational damping coefficient. 

The model is simplified. The kite has been assumed to be rigid, weight of the 

kite-wire negligible, and plane motions (constant altitude, constant pitch, negligible 

roll). All the aerodynamic parameters (lateral force and moment) are supposed to 
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be linear functions of yaw angle +o. The strain due to the kite-wire is supposed to 
be proportional to angle a between cable and the vertical plane containing wind 
vector V. 

All these assumptions are valid for small motions. 

35.2 SY%lBOLS 0’D DEFI?BTIONS 

35.2. I Properties of Streamlined Balloons 

L Length of the kite-wire 

M Total mass: balloon, payload, additional mass of air 

I Total inertia momentum, relative to the gravity center G 

6 Distance between verticals of mooring point A and gravity center G 

v Wind speed 

c,,cy>c, Aerodynamic forces coefficients: drag, lateral lift, vertical lift. 
The axis system is relative to the wind. 

Fx,FyF, Correspondent forces. Related to their coefficients by relations 
as the following one: 

F V2 
Y 

= cy ps 2 

where p is air density, and S the main cross section of the balloon. 

‘n Aerodynamic torque coefficient relative to the vertical of point A. 

Mn Moment of the torque. H being the balloon length: 

Mn =C,HpS ‘; 

4 

a 

FV 

F4 

Projection on the horizontal plane of the yaw angle 

Angle of the kite-wire relative to the vertical plane containing 
wind vector V 

Kite-w ire tension. Due to bouyancy and aerodynamic vertical lift 
plus drag 

Derivative of Fy force relative to angle 4: 
a F__ 

Derivative of the moment M, relative to angle 4: 
aM_ 
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R4 Rotation damping coefficient relative to the gravity center G. 

We supposed first that kite-balloon notion was plane (4 and a supposed to be 

small). Some aerodynamic considerations lead us to assume this motion linear. 

If yaw angle increases from O” to 10°C, the Cx increment is 0. 1 (0. 3 to 0. 4) 

when Cy increases from 0.0 to 0.8 (see Figure 35. 1). 

The balloon being initially in equilibrium with a yaw angle of O”, a crosswind 

nonequilibrated force Fy will appear, and point A will move along Cy axis. The 
kite-wire will provide a strain b Fv (see Figure 35. 2), which is oriented along 

axis Oy. 

Thus the motion can be described with angles CY and 4 only. 

0.k - 

Figure 35. 1 Figure 35.2 

35.3 EQUATIONS OF THE MOTION 

If the balloon moves with a speed v, wind speed being V, the aerodynamic 

forces will be due to relative wind vector F - < This vector has a $J, angle with 

the balloon axis (apparent Yaw angle). Let us now examine the forces and torques 

system relative to gravity center G. 

Forces are: 

FY 
- (1 FV 



Torques are: 

- Mn + UFY - aFv) 

This second torque is the damping torque, due to rotation speed --$ . Wind 
d4 

tunnel tests and theoretical calculations showed that g is a linear function of -$. 

Thus we shall write: 

The following equations describe the forces and torques system relative to 

point G; 

ML d2a 2 

dt2 
=-FVff+F Q +M6 Q 

4 o dt2 

I 2 = (-FVa + F+$J~)~ -M4$, - R4 3 

35.4 LAPLACE TRANSFORMOFTHE SYSTEM 

The initial assumptions we did lead us to have I 

which are the derivatives relative to 4 of 

F 
Y 

Mn 

as constants. Thus, the former system of mechanical equations can be treated by 

LAPLACE transform: 

a becomes yl 

4 becomes y2 

4. becomes ~3 
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As we need to derive criteria stability. we will suppose wind vector rto be 

constant and the balloon in initial equilibrium. a, 6. and their first and second 

order derivatives relative to the time are zero for time zero. 

Such LAPLACE transform can be written as: 

0 = Y1 +y2M6s2+y F 
3 0 

0 =yl Is2]+y3[6F,++, -M4 -R4s] 

0 = y1 [- $ s] + y2 [I + $ s] - y3 

These equations give a stable mechanical system if the roots of their coeffi- 

cients determinant have positive real parts. Developing this determinant A gives 

a fourth degree expression: 

A = a0 s4 + al s3 + a2 s2 + a3 s + a4 

with 

a =l 
0 

R4 F$ 
al= I + XT-V 

= 2 1 + Mh2 + M$ - *F4 + R+ 6F 

Fv M4 a4 = -flcII;- . 

35.5 ST;\BlLITY CRITERIA 

Respect of the former condition is given by ROUTH criteria. The three follow- 

ing conditions must be true: 

(1) ao,al,a2,a3,a4 > 0 
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(3) a3 - 
ala4 >() 

ao a 3 -- 
a2 al 

In fact, mechanical parameters are such that only the term a2 can be negative 

due to the expression 

This expression represents the slope of aerodynamic momentum torque curve 

relative to the gravity center, majored of the term dF,. This slope would be posi- 

tive if the aerodynamic transversal force was located behind gravity center. Any- 

way we can conclude that drag increases stability. 

The second condition is more restraining than the first one if damping coeffi- 

cient R$ or torque momentum coefficient M4 (relative to the mooring point) are too 

important. 

The third condition assigns a minimum altitude of stability. 

35.6 CONCLUSIONS 

For a given altitude, classical balloons have a critical wind speed. Even with 

streamlined wind, they move in a crosswind direction. At the same altitude, 

homotetical balloons have a critical wind speed proportional to the volume square 

root. 

For a given wind speed, classical balloons have two critical altitudes of 

stability. If a balloon has a considerable kite effect or aerodynamic resultant 

behind gravity center, it will have only a minimum height of stability and no critical 

speed. 

Some other conclusions are surprising. For instance, drag always has an 

improving effect. Thus, Crude-Section fins (like Caquot fins for instance) are 

more efficient than streamlined ones of the same shape. And streamlined hulls, 

class C-like can be more difficult to stabilize than cruder ones. 

Lastly, to stabilize balloons it is necessary to have fins providing an important 

torque, less lateral lift, much vertical lift. 

Thus vertical fins must be small, in a very rear position. Horizontal fins 

must be large in a middle position. This is possible, as far as vertical fins are 

concerned, if the balloon is small. Upon large ships such fins would bend the hull. 

One of the solutions we experimented successfully with was to fit a parachute 

upon the upper fins. This device increased drag and provided a damping coefficient 

ten times higher. Critical wind speed was thus raised. Over critical speed, the 

movement amplitude was reduced by damping. 


